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ABSTRACT: Identifying the catalytically active site(s) in
the oxygen reduction reaction (ORR), under real-time
electrochemical conditions, is critical to the development
of fuel cells and other technologies. We have employed in
situ synchrotron-based X-ray absorption spectroscopy
(XAS) to investigate the synergistic interaction of a
Co−Mn oxide catalyst which exhibits impressive ORR
activity in alkaline fuel cells. X-ray absorption near edge
structure (XANES) was used to track the dynamic
structural changes of Co and Mn under both steady
state (constant applied potential) and nonsteady state
(potentiodynamic cyclic voltammetry, CV). Under steady
state conditions, both Mn and Co valences decreased at
lower potentials, indicating the conversion from Mn-
(III,IV) and Co(III) to Mn(II,III) and Co(II), respec-
tively. Rapid X-ray data acquisition, combined with a slow
sweep rate in CV, enabled a 3 mV resolution in the
applied potential, approaching a nonsteady (potentiody-
namic) state. Changes in the Co and Mn valence states
were simultaneous and exhibited periodic patterns that
tracked the cyclic potential sweeps. To the best of our
knowledge, this represents the first study, using in situ
XAS, to resolve the synergistic catalytic mechanism of a
bimetallic oxide. Strategies developed/described herein
can provide a promising approach to unveil the reaction
mechanism for other multimetallic electrocatalysts.

As high-efficiency energy-conversion devices, proton
exchange membrane fuel cells (PEMFCs) have been

recognized as critical technologies for electric vehicles.1,2

However, PEMFCs rely on expensive Pt-based electrocatalysts
for the sluggish ORR.3−6 As an emerging alternative, alkaline
fuel cells have drawn increasing attention since they enable the
use of nonprecious metal electrocatalysts.7,8 To facilitate the
ORR in alkaline media, great efforts have been devoted to the
search of alternative electrocatalysts. Among these, 3d metal
oxides have garnered increasing interest as a novel family as
ORR electrocatalysts due to their high activity, long durability
and low cost.9 However, the electrocatalytic mechanism of the

ORR using metal oxides remains unclear and catalysts,
characterized ex situ, may not (and likely do not) maintain
the same properties under real-time electrochemical con-
ditions, which calls for the use of in situ/operando techniques to
identify the true active site(s).
Synchrotron-based XAS is a powerful in situ technique to

study electrocatalytic mechanisms because it can provide
atomic-level information on electrochemical reactions. In
addition, the high penetration of high-energy X-rays enables
the operando study of electrochemical interfaces.10 In situ XAS
has been used to study changes of precious metal-based ORR
electrocatalysts.11−16 It has also been employed to follow the
structural changes of manganese oxide,17 cobalt oxide18 and
cobalt phosphate19 based materials for water oxidation. In this
work, we demonstrate that Co−Mn oxide is a highly active
electrocatalyst toward the ORR and, based on in situ XAS
measurements, propose that Co and Mn serve as coactive/
synergistic sites to catalyze the ORR.
Co−Mn oxide nanoparticles, supported on carbon, were

synthesized via a hydrothermal method and their crystal
structure was examined by X-ray diffraction (XRD) (Figure
S1). Co3O4/C and Mn3O4/C were found to have cubic and
tetragonal spinel structures, respectively. The synthesized
Co1.5Mn1.5O4/C was verified to be single phase with a crystal
structure similar to that of the cubic Co3O4. The
Co1.5Mn1.5O4/C exhibited very high ORR activity with a
half-wave potential (E1/2) of 0.85 V vs RHE, which compares
very favorably with those of Co3O4/C (0.76 V) and Mn3O4/C
(0.77 V) (Figure S2A). Co1.5Mn1.5O4/C had a mass-specific
activity (MA) of 28.41 A/g at 0.85 V, five times higher than
that of Mn3O4/C and ten times higher than that of Mn3O4/C
(Figure S2B). The superior ORR activity of the bimetallic
Co1.5Mn1.5O4/C, over monometallic Co3O4/C and Mn3O4/C,
suggests an underlying synergistic catalytic mechanism
involving both Co and Mn to catalyze the reduction of oxygen.
Synchrotron-based XAS was employed to investigate the

catalytic mechanism of Co1.5Mn1.5O4/C under real-time
operando electrochemical conditions. We designed a new
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electrochemical cell for in situ XAS measurements, made of
chemically inert Teflon and in which the thickness of the
electrolyte could be controlled to be less than 200 μm (Figures
1 and S3). The working electrode (WE) consisted of a 40 μm

catalyst layer sprayed/deposited on 200 μm thick carbon paper
(Figure S4). Prior to the in situ XAS measurements, a CV of
the Co1.5Mn1.5O4/C electrode was carried out in both the in
situ XAS homemade cell and a conventional electrochemical
cell, to verify that the in situ cell exhibited the characteristic
redox couples of the Co−Mn oxide (Figure S5). The CVs of
the electrocatalysts were then tested with the X-ray beam on
and off revealing no noticeable beam damage (Figure S6),
indicating that studies of the electrocatalytic mechanism would
not be affected by the X-ray beam during in situ X-ray
experiments.
To investigate the steady-state electrochemical response of

the Co−Mn oxide catalysts, the applied potential was held
constant while in situ XANES spectra were acquired, after the
current had dropped to background levels. Based on the CV
response of the catalysts at a sweep rate of 1 mV/s (Figure S6),
constant applied potentials of 0.95, 1.15 and 0.75 V
corresponding to the oxidation peak and potentials before
and after the peak, respectively, were applied. Similarly,
potentials of 0.55, 0.75 and 0.4 V corresponding to the
reduction peak and potentials before and after the peak,
respectively, were applied. The XANES spectra around the Mn
K-edge exhibited systematic changes in the local electronic
structure of Co1.5Mn1.5O4 (Figure 2). The magnified inset on
the left of the shoulder peak at 6553 eV showed a gradual
increase in the peak intensity and a small shift to lower
energies when the applied potential decreased from 1.15 to 0.4
V, indicating a lower Mn valence at the more negative
potentials. The most intense peak, near 6559 eV, originates
from an electronic transition from 1s to 4p orbitals. In the pre-
edge region, the peak at 6540 eV arises from the transition
from 1s to 3d orbitals. Although 1s-3d transitions are generally
not allowed, due to the dipole selection rule, it can be observed
if the absorber coordinates in a noncentrosymmetric geometry,
allowing for the hybridization of d and p orbitals, indicating
that the MnO6 octahedra are slightly Jahn−Teller distorted.

In order to quantitatively study the Mn valence changes, we
used the linear combination fitting (LCF) method with
reference manganese oxides including MnO(II) ,
Mn3O4(II,III), Mn2O3(III) and MnO2(IV). As shown in
Figure S7, the LCF is able to fit well the experimental Mn
XANES spectra and allows calculating the relative contribu-
tions in terms of the different Mn oxide references. As shown
in the lower right inset of Figure 2, when the applied potential
decreases from 1.15 to 0.4 V, the MnO2% contribution
decreases by 19% while Mn3O4% and Mn2O3% increase by
12% and 7%, respectively. MnO% was calculated to be 0% at
essentially all potentials. Overall, the average Mn valence
decreases from 3.15 to 2.91. This systematic valence
conversion of Mn(III,IV) to Mn(II,III) indicates that various
Mn species can serve as the active site to catalyze the ORR.
Similar to changes in the Mn valence at a series of applied

potentials, XANES spectra, around the Co K-edge, also show
regular changes in the local electronic structure of Co atoms
inCo1.5Mn1.5O4/C (Figure 3). The magnified inset (top left) of
Co XANES spectra around 7722.5 eV reveals a gradual
increase in the peak intensity and a small shift to lower
energies when the applied potential decreased from 1.15 to 0.4
V, indicating a lower Co valence at lower applied potentials.
LCF was also employed to quantitatively analyze the Co
valence with Co(OH)2(II), Co3O4(II,III) and CoOOH(III) as
cobalt oxide references (Figure S8). When the applied
potential was varied from 1.1 to 0.4 V, the CoOOH
contribution decreased by 14% while that of Co(OH)2
increased by 19%. In contrast to changes for Mn3O4%, the
Co3O4% remained relatively stable at the different applied
potentials. Overall, the average Co valence decreased from 2.75
to 2.57, indicating a valence conversion from Co(III) to
Co(II). Since the Co valence changes with the applied
potential took place at the same time as Mn, it suggests that Co
and Mn could serve as coactive sites to catalyze the ORR.
While Co and Mn valence changes could be monitored

under steady state, it would be much more valuable if we could
also track the dynamic valence changes of Co and Mn at the
same time under nonsteady conditions. However, a typical

Figure 1. Schematic of the in situ XAS electrochemical cell. Working
electrode (WE, catalyst on carbon paper) and counter electrode (CE,
carbon rod) were immersed in 1 M KOH solution. The reference
electrode was connected to the cell by a salt bridge to minimize IR
drops caused by the resistance in the thin electrolyte layer (<200 μm)
within the X-ray window.

Figure 2. In situ XANES spectra of the Mn K-edge at a series of
applied potentials. Top left inset shows an expanded section from
6550 to 6556 eV. The lower right inset shows the result of the Mn
valence analysis by using the linear combination fitting (LCF) method
and Mn3O4(II,III), Mn2O3(III) and MnO2(IV) as references.
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high-quality XANES spectrum takes 20−30 min to acquire,
making it impossible to acquire one XANES spectrum while
the potential is being scanned in a CV. Alternatively,
characteristic photon energy values corresponding to the Co
and Mn valence changes could be used as probes to track the
dynamic valence changes during a CV scan. Co and Mn
XANES at 7722.5 and 6553.0 eV, respectively, were used as
the characteristic energy values where the largest changes in
the X-ray intensities, with applied potential, occurred. In order
to quantify the speed at which a nonsteady state could be
tracked, a new concept, “electrode potential resolution”, was
defined as the potential interval over which a single X-ray data
point could be acquired. In this work, the electrode potential
resolution = potential sweep rate × X-ray acquisition time = 1
mV/s × 3 s = 3 mV, meaning that the X-ray signal is averaged
over a 3 mV potential interval, closely approximating a
nonsteady (potentiodynamic) measurement. We divided the
cyclic voltammogram into two regions, based on the sign of the
current (upper inset of Figure 4). The positive current from
0.42 to 1.25 V and from 1.25 to 0.42 V (clockwise) indicates
oxidation/reduction currents where Mn and Co are converted
into higher/lower valence species, respectively.
As shown in Figure 4, the relative X-ray intensities of Co and

Mn changed with the same periodic pattern as the cyclic
potential sweep. The relative X-ray intensity was calculated by
ln(I1/I2) where I1 and I2 are the incident and transmitted X-ray
beam intensities, respectively. When the electrode potential
was scanned from the upper limit (1.4 V) to the lower limit
(0.3 V) (reductive current), the relative X-ray intensities
evolved from minimum (higher Co, Mn valence) to maximum
values (lower Co, Mn valence), indicating that Co1.5Mn1.5O4 is
reduced with Co(III) being converted into Co(II) and
Mn(III,IV) being converted into Mn(II,III). Co(II) and
Mn(II,III) reach their maxima at 0.42 V, instead of at the
lower potential limit (0.3 V), while Co(III) and Mn(III,IV)
reach their maxima at 1.25 V, instead of at the higher potential
limit (1.4 V). This is fully consistent with the boundary
potentials (0.42, 1.25 V) of oxidation and reduction currents in
the CV. The periodic patterns of Co and Mn valence changes

are in sync with each other, strongly suggesting a synergistic
catalysis mechanism between Co and Mn toward the ORR.
Furthermore, dynamic changes in the Co and Mn valences
were reproducible over the time period of 2 h, indicating that
the catalyst is stable within the experimental time scale. To
rigorously evaluate the effect(s) of the applied cyclic potential
sweep, a control experiment was performed by acquiring the X-
ray signal over the Mn XANES region without an applied
potential. The fact that there were no changes in the X-ray
intensity indicates that the dynamic changes of Co and Mn
valences primarily arise from the applied potential sweep, and
not from X-ray-generated photoelectrons.
In conclusion, in situ X-ray absorption spectroscopy (XAS)

has been employed to identify the active sites of a bimetallic
Co1.5Mn1.5O4/C catalyst, which exhibits impressive activity
toward the ORR. We used in situ XANES to track the
oxidation state changes of Co and Mn not only under a
constant applied potential but also during dynamic cyclic
voltammetry. The periodic conversion between Mn(III,IV),
Co(III) and Mn(II,III), Co(II) during the CV indicates that
Co+2/3 and Mn+2/3/4 redox couples could serve as coactive sites
to synergistically catalyze the ORR.
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Figure 3. In situ XANES spectra of the Co K-edge at a series of
applied potentials. Top left inset shows an expanded section from
7720 to 7725 eV. The lower right inset shows the result of the Co
valence analysis, using the LCF method with Co(OH)2(II),
Co3O4(II,III) and CoOOH(III) as references.

Figure 4. Periodic changes in the relative X-ray intensities (ln(I1/I2))
at 7722.5 eV (Co K-edge) and 6553.0 eV (Mn K-edge) as a function
of the cyclic potential sweep. Intensity variations at 7722.5 and 6553.0
eV reflect the conversion between Co(II) and Co(III), Mn(II,III) and
Mn(IV), respectively. The upper inset shows the corresponding CV at
1 mV/s over the potential range of 0.3−1.4 V vs RHE. Oxidation and
reduction currents in the CV are divided by two boundary potentials,
0.42 and 1.25 V, respectively.
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